Online Parallelization of Plans with Heuristic State Search
نویسندگان
چکیده
Despite their near dominance, heuristic state search planners still lag behind disjunctive planners in the generation of parallel plans in classical planning. The reason is that directly searching for parallel solutions in state space planners would require the planners to branch on all possible subsets of parallel actions, thus increasing the branching factor exponentially. We present a variant of our heuristic state search planner AltAlt called AltAlt which generates parallel plans by using greedy online parallelization of partial plans. The greedy approach is significantly informed by the use of novel distance heuristics that AltAlt derives from a graphplan-style planning graph for the problem. While this approach is not guaranteed to provide optimal parallel plans, empirical results show that AltAlt is capable of generating good quality parallel plans at a fraction of the cost incurred by the disjunctive planners.
منابع مشابه
AltAlt: Online Parallelization of Plans with Heuristic State Search
Despite their near dominance, heuristic state search planners still lag behind disjunctive planners in the generation of parallel plans in classical planning. The reason is that directly searching for parallel solutions in state space planners would require the planners to branch on all possible subsets of parallel actions, thus increasing the branching factor exponentially. We present a varian...
متن کاملAltAltp: Online Parallelization of Plans with Heuristic State Search
Despite their near dominance, heuristic state search planners still lag behind disjunctive planners in the generation of parallel plans in classical planning. The reason is that directly searching for parallel solutions in state space planners would require the planners to branch on all possible subsets of parallel actions, thus increasing the branching factor exponentially. We present a varian...
متن کاملParallelizing State Space Plans Online
Searching for parallel solutions in state space planners is a challenging problem, because it would require the planners to branch on all possible subsets of parallel actions, exponentially increasing their branching factor. We introduce a variant of our heuristic state search planner AltAlt, which generates parallel plans by using greedy online parallelization of partial plans. Empirical resul...
متن کاملRobust Motion Planning via Perception-Aware Multiobjective Search on GPUs
In this paper we describe a framework towards computing well-localized, robust motion plans through the perception-aware motion planning problem, whereby we seek a low-cost motion plan subject to a separate constraint on perception localization quality. To solve this problem we introduce the Multiobjective PerceptionAware Planning (MPAP) algorithm which explores the state space via a multiobjec...
متن کاملPerception-Aware Motion Planning via Multiobjective Search on GPUs
In this paper we describe a framework towards computing well-localized, robust motion plans through the perception-aware motion planning problem, whereby we seek a low-cost motion plan subject to a separate constraint on perception localization quality. To solve this problem we introduce the Multiobjective PerceptionAware Planning (MPAP) algorithm which explores the state space via a multiobjec...
متن کامل